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FOREWORD

The MITRE Corporation is concerned with the survivability of the
Air Force Command and Control Systems, It conducts studies in this
general area in order to determine the levels at which various systems
components fail and investigates various alleviating measures which may
be employed to raise the levels of survivability.

One phase of this work is concerned with the behavior of deep under-
ground hard command posts excavated in soil and rock when subjected to
nuclear attack,

Among the many problems involved in this area, one of the most
important and, perhaps, least understood is the phenomena asgsociated with
the transmission of ground shock to the underground command post, It is
known that shock loads such as those produced by nuclear weapons will be
transmitted through the ground by means of stress waves; however, because
of the complexity involved, only skeletal information is presently avail-
able that can be applied to the actual design of the underground command
post, It is important that basic research in this field be accelerated
so that appropriate criteria can be established for the design of installa-
tions of interest to the Command-Control Develomment Division,

At MITRE programs have been initiated to study stress wave propasgation -
in various media because we are interested in many given geographic locations,
and since earth materials which vary widely from site to site exhibit different
properties and characteristics, many analytical models are necessary to pre~
dict the response behavior of the geologic materials at a variety of sites.

Some of these models are: linear-elastic, non-linear elastic, elastic-plastic,
elastic-locking, visco-elastic, visco-plastic, ete, .

Information contained herein is concerned with stress wave propagation
phenomena in visco-elastic media., The numerical results given are for the
purpose of demonstrating visco-elastic effects and should not be construed
as representing the actual behavior of a given rock or soil medfum. This is
due to a lack of information on the physical visco-elastic constants
associated with various types of rock and soil,

This report 18 a part of a series of studies currently being carried out
by MITRE and Paul Weidlinger, Consulting Engineer, New York City.
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. actual media such as rock or soil with complex properties which are &ifficult -
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INTRODUCTION

This report is one of a series of technicai discussions and papers
concerned with the theory of wave propagation in solids with special
spplications to ground shock phenoﬁsim. It presents theoretical results.
on the free field effects due to progressing pressure loadings on tﬁe
mrfacc\of-n semi-infinite linearly viscoslastic (standard solid) half-

space.

The ultimate purpose of this group of pepers is to arrive at conclusions
for the free field effects due to progressing surface pressurs loadings on

to analyse. The problem of rocklike medis has been approached by conlideriﬁg

a succession of materials having sru.lu..uy more complex properties such as
1) an acoustic inviscid fluid, 2) a linear elastic solid, 3) a non-linearly
elastic solid [(1)-(3) = Bee Reference [1]] end a linearly vucoeluti,cv solia
in ﬁo present r_cport. It 1s felt that in this menner, certain conclusions
vhich can be drawn for cases of simple properties can be cxirapohted for :‘
more complex properties by qualitative reasoning. 7

_ The paper represents & step in the investigation of free field pheﬁoneu
1in viscoelastic materials but considerable future wvork remains to be performed
in this field. It presentsthe plane strain solution for the stress distridbution .

produced by the uniform motion of the pressure wave on the surface of the medium.
The analysis is based on the assumption that a lt.udy. state exists vithArupect
to & coordinate system attached to the moving load and that the velocity of the
moving loed is greater than that of irrotational and equivoluminal waves in the




.2.

-udiun (superseismic case). Further investigations in which the free field
streases in the vtrmo-uiuic and subseismic regions l.ro dot.enﬁnd and ;n |
‘vhich the velocity of the surface pressure varies as s function of time
vill be fequirod for & more complete pic&ﬁro of the phencmena in quntion.'

Attention must also be paid to the relation of the mathematical model
to the expected phygica.l behavior of the material. For those rocks vhich
may be expected to act viscoelastically, much work remains to be done on
the experimental determination of the appropriate viscoelistic constants
vhich m required as input parameters in the analysis; such informetion
is not available at the present time. '

Numerical results are presented for a hypothetical viscoelastic material
and the free field stresses are evaluated. ﬁey are compared with the cor-
responding stresses in the miaterial in its relaxed and unrelaxed slastic
state. The results are illustrative only and should not be teken as.
epplying to specific real materials unless experimentsl investigations
thow the coincidence of the viscoelastic parsmeters for the model and the
real material. ’ '
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List of Synbole”

C, (c;): Velocity of propagation of high (low) frequency irrotational
’uvu. CL - (-’3-;35)‘, c; = (ﬁ::_e!‘:)‘.

C.r (C;)‘; Velocity of propsgation of high (low) frequency equivolmnﬁ.
o oG, 4,

) Laplace Transforn of £({).

H(x): Unit step function. H(x) = 0, x < 0; H(x) =1, x> 0.

K: Bulk fmodulus.

»
n: Ratio of relaxed to unrelaxed shear modulus. m = ! /.

ol

0“;"

a0

L

T C

o

.L, "l‘, I;' n;:!'uncuonl of Mach numbers: e (l{ - )‘, ete.

"L,

) pen(l) 4

By 3 Transforms of viscoelastic operators; & - » [—7,-;:—"—]

m(ﬁ)a ]
By = [—;:.:’—-] :

)
Other symbols are defined as they appear in the text.




B R L L

3
obu l
Ao 2u” b, 0 i
x.n Ratio of relaxed to unrelaxed modulis n = f?gu_ «al - 3 X (1-m). I
. . P
p? Laplace transform parameter. | ,
i
1
Py Intensity of surface pressure. |
I !
| e E
Q: Viscoelastic operator. Q = —-é .
- l+ 3 l .
t: Tine. l
T: ' Relaxation time. I
u, 3 Cartesian components of the displacement vector. I
\ £} Velocity of steadily moving surface pressure. 1
X, ¥, % Fixed, rectangular, Cartesian, space coordinates. I
X, ¥, 8¢ Space coordinates attached to the moving load. I
1
6“: Kronecker delta: biJ =), 1=}; b“ =0, 14¢).

» ' .
8, 0 : Functions of the Mach nunbers: 8 = (-: -12. by o, 5 ';I

0" = (o - 1 ¢ i .
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Viscoelastic operator: 4 = (i,ra - L)a + "il.i'r .

Nondimensional space coordinates: { = -35,1.- ) @ V.‘T .

Ratio of propegation velocity of high frequency equivoluminal

waves to high frequency irrotational vaves. X = X_-'-Li_u .
Unrelaxed (relaxed) Lamé constant.

Viscoelastic Lamé operator. A= K=« S 4 .

win

Unrelaxed (relaxed) shear modulus.

-~ m+T %
Viscoelastic shear operator. u = p [———?a-] .
1+7T

Poisson's ratio for the unrelaxed material.
Density of the material.
Cartesian components of the stress tensor.

Portion of stress components due to the irrotational
(equivoluminal) potential.

St s g R v < e
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Soalar (or irrotaticnal) potential.

Veotor (or equivoluminal ) poteatial.

The y ocomponent of \h‘.
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" Introduction.
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This paper considers the plane strain problem of finding the stress
distribution produced by the uniform motion of & step pressure on the
surface of a linear viscoelastic (standard-solid) half-space (Fig. 1).
The speed of the load is assumed to be greater than the velocities of
plane irrotational and equivoluminal waves in the medium (superseismic case).

Eliminating the effect of initial conditions, it is assumed that the load

is moving in from X = ®», such that a steady state exists with respect to
& coordinate system sttached to the moving load. The equivalent problem

for the elastic case has been treated in Ref. [1].

The solution for arbitrary load distribution can be obtained by
superposition from the solution for the step pressure. Although not
considered here, the case of tangential loads on the surface of the half-

space could be treaﬁed in the same manner.

Pormulation.

Let (X, ¥, &) denote fixed, rectangular, Cartesian, space coordinates,
vhile (x, y, £) denote space coordinates attached to the front of the ( i
moving load P, H(x) (Fig. 1), where P, is the pressure intensity and H is
f;he unit step function. The uniformly distributed pressure moves over
the surface of the half-space in the negative x direction with a speed V.
At the time ¢t = 0, the tvo coordinate systems are taken to be in coincidence 4
80 that

XeX+Vt, ye¥y, sat (1) ]
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‘ The stress-displacement relations in a homogeneous, isotropic medium

wvhich is elastic in bulk and viscoelastic in shear is

Oy A, By "(“1,4 + uJ.i,) @)
1,)k= i:;);‘
vith

NeK- ; ' (3s)

win

vhere K is the bulk modulus and ﬁ is the shear operator¥ Belecting the
ltinda.rd-sol:ld. model :

Bew—2 ()

vhere u is the "unrelaxed” and my = p;i':' (0 <m<1)1is the relaxed shear
modulus, while T is a relaxation time (see Ref. 2). '

The equations of motion of & continuum in the absence of body forces.
are, for small displacements, '
9, N pidy (b)
vhere p is the density. Eqs. (2) and (4) can be combined to give the

differential equations on the displacements:

(x + ;)udidi + ; “1“"3 - pﬁi " (5)

By means of the Helmholtsz resolution, the displacement vector can be
separated into an irrotational and equivoluminal part

u =4, . 4k Ve, Yy,5=° ' | (6)
vhere € K is the alternating tensor, and vhere the irrotational part co;nu

from the scalar potential ¥ and the equivoluminal part from the vector
potential 11'

* The usual convention of summation over repeated subscripts is adopted.
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Equition (5) vill be satisfied if ¢ and ‘h satisfy the following equations:

(K+2§)§,JJ-9.§. : (7a)

vhere '
n+T 3%-)

x+2;- ().+2u)(
Py

X-K-g%
> A (7¢)

nsl- %X'(l-n)

" -2V
X =35 2p 2tl-v) )

v being Poisson's ratio for the unrelaxed material. Rote that for

-15V$§,0_<_n<1.

For plane strein in the (X, £) plane, a suitsble form for the potentials
is .

i' }(i: ;:'t) ’ i; - }; =0, ‘}i - 1}(;" i: t) (8)
Bince the solution is a steady state solution in the (x, z) coordinste

system, transforming to this system leads to equation independent of t.
Thus, by the use of Eqs. (1) and (8), Eqs. (7a) and (7b) give:

w2 L2 |
[ﬁol_éii][%i_f Bl 2 ow
°;2 + B R[RY 2V 2
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vhers ) N
.x+2g
cf‘ )
2 » _ % g2t
oAt E
L P o L
. Y (9¢)
L g
b 1 G -h-aq
X £ i
b= } "W )

»
The quantity C; (CL) represents the velocity of propsgation of high (low)
frequency, plane, irrotational vaves in the standard-solid medium, vhile
Cop (c;.) represents the propagation velocity for high (low) frequency, plane,

equivoluminal waves.
The boundary conditions to be satisfied by ; and ‘I’ are determined
from the traction conditions at the surface of the half space, 3= 0 3
0 s(8:0) = 0 " (10w)
9,,(1,0) = - p_a(H) (100)

Utilistng Bqs. (1), (2), (6) and (9), Eqe. (10) can be written in terms of
fad ¥. At 0

(w.)a:?-zqgtéi-lr@-mls:;‘}-o (1a)
o 2 ’
(ve)® L2 0 - ) ;:3§ + a;%?- - (v'r)"’;gn(t) (11»)
vhere

+*
(11e)

e

1+

Nr-a; } Q=

3
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' The formulation of the problem is not yet complete, for there is -
still a further condition to be specified which arises from physical
considerations. Because the load moves vith a velocity which is gruter‘
than the propagation velocities in the standard-solid medium, no disturbances
can ever gat shead of the load. Thus for § < O, the medium is undisturbed
(see Fig. (1)). Actually, since the propagation velocities of irrotational
vaves have a definite maximum value (C), 1t 1s seen physically that there
will be a straight line of demarcation between the disturbed and undisturbed
portion of the medium - the Mach line (or wave fromt) for irrotational
disturbances, inﬁcﬂnd on Fig. (1) by the 1ine OI. Irrotational disturbances -
can exist only behind this line. Similarly, equivoluminal disturbances can
exist only behind the equivoluminal vave front or Mach line, OF in Fig. (1).
Thus for | < O quiescent conditions exist, and the solution will have
non~-vanishing values only for § > Q, persitting the use of a Laplace trmtoin
in §. |

The formulation of the problem is now complete. Egquations (9) must be
solved subject to the conditions at n = 0, given by Eqs. (11), and to the
condition of quiescence for g < 0'. Baving obtained §lnd ”I'., the displacements
and stresses may be computed from Eqs. (6) and (2), respectively, utilizing
Eqs. (1) ana (8).

Yormal Bolution.

The solution to the problem can de written formsally as a complex
integral by the use of the Laplace transform, defined by

Ho) = [Pt ar (12)

o

with the inversion
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ftn) = g [t o
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(23)

Applying this transform, and utilizing the condition of quiueoncg

for § < 0, Eqs. (9) yield

2— -
%ng"l’aira‘} =0

where m; 2
—)"_.1/2
,,L) /

(
‘x.":.[p:-:'r-] » Bo &y, >0

ny
4

m = 0 - Y2 5 ap e 0@ - M2

-

a e f 1M e o e
%

N .

CL

tl<

PR A

LA

C

3

Equations (l4a, b) have the solutions
-pm P, 7
; = Ae mL + A'g mL

Fade Tape T

(1ba)

(1)

(1be)

(158)

(15%)

vhere A, A', B, B' are arbitrary constants. The condition of Quiescence

for § < O will be satisfied if

A'aB'=s O

(15¢)

£
-
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The constants A and B are determined from the transforms of the boundary
conditions, Eqs. (11):
N B _ o
2 - 0Fs2 2 ¥e- ;‘;(gé—i) or? (32) (260)

Thess equations give for A and B:

2

"p,(VT) 17- . | '
A=- L om ] [931(?;;)4 [.Ta - ] . : : (17s)
' = PPO(W)j[’ 1 i -
gl o o

vhere

ae (@2 - 1P By By : (17¢)

Thus 2 and Y} are determined, and the transforms of the stress components
can now be found.

Btress Components at the Wave Fronts.

From Eqs. (2) and (6) it 1s seen that the stress components may be
written in two portions

13 " %130 * 19y I o (18)

vhere o, Tesults from the irrotational potential ¢ ana Oy 4y Trom the
equivoluminal potential {'.
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Utilising the results of the preceding sections, the transforms of these

quantities are:

Y R L S
. (g [en}™ e
T 3] (w2 - 0p ™ o
Cmfmetoap™ a0
] e
a,uv"’u; - | (19¢)
R | R (S
LY ! . (15n)

Note the formal correspondence between these results and iho results for
the elastic body. If the Laplace transform (in the varisble { = ai) of the

it o TSNy - Jﬂ
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elastic solution [Ref. (1) - Eqs. (51-53)) is taken, and then m, and m
in the elastic solution are replaced by &, and i, , Eqs. (19) are cbtained. '

Because of the complexity of the inverted forms of 9 9 and °1 W’ it
1s useful to obtain closed form expressions for these quantities and their
first derivatives at the wave fronts. These expressions are obtained by
considering the asymptotic expansions of the quantities ‘pnnn aidw and

o As shown in the Appendix, the first two coefficients of the

] c .
130 pan .
expansaion in povers of ; of e 1JQ represent the values of_cuQ and

é% °13¢ Just behind the irrotational vave front. A similar situation
exists for the equivoluminal portion of the stress components at the

equivoluminal wave front.

Immediately behind the irrotational vave front (i.e. at § = .Lq*),

these values are:

29 ..y 0@ - 2f) (a2 - 1) (208

. (1em) - 2 (l-n) (1-m) 5,
% “om " m[’é E.fﬁ % 2 2”"']

2@ e
s [0 R0 ]

a-icxw .ﬁ-l mL —°-+b‘l
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O T S (00)

zniu-:) &, “] | (oot

335 Tsep = “ss9 [’2—_ ®

"—93--(%)(-:-1)(@-4/--«» o

> B(1-a) - 261-n) ¥G(-n)
P o £ I A
vhere |
6 - (ap - 1Fs bmmy |
¥ (1-0)
AR
(201)

g

o e B0 - 1) (1..)+¥L»§(1’.n)¢%;€(1..)

2

b [ﬁ__ﬂ [Raaese) - wa] [;:] k

Immediately behind the equivoluminal wave front (Leee at § = -,rq’)

the values and first derivatives of 6‘1 " aret

A o
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(1-n) ¥(1-m)
3% Oxzy xz¥ [’iz.: i 1 ?—b‘. * cq]
G:z' - - Om

'llotethatthe.jumpsctthotvovavofrontlw&mttenu

El _-an
930 ® %139 ©

EL _-py
3¢ = Y13y ®

(21v)

‘21@)
(21a)
(21e)
(aar) -

(218)

(21n)
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19
medium having elastic moduli equal to0 the unrelaxed moduli of the

The quantities o and oﬂ" are the equivalent Jumps in an elastic
standard solia.

Btzjul Components Far Behind the Wave l'iontl.

To obtain the value of the stress components far behind the vave
front, the final value theorem for the Laplace transform is utilised:

limp 5“ e lin 9
p0 e

J

The values obtained are (for {§ = =):

32 @0 )0 =)

(22e)

(22»)

(220)

(224)

(22¢)

(22r)
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vy = © (22n)
vhere
o (e 1) 4 et (221)

These values correspond to the values of the stress components which would
occur in an elastic icdim having elastic moduli equal to those of the
totally relaxed standard-solid. This fact might have been foreseen from

purely physical reasoning.

Approximate Expressions for the Stress Components.

By utilieing the expressions for the jumps and first derivatives of
the stresses behind the vave ﬁ-onts', and for the values of the stresses
as § -+ =», spproximate expressions for the stress components for all

values of | may be constructed. For instance, having the value of 9 9 and

3% % 0 at the irrotational wave front, and of % 3p § » =, a suitable
curve may be interpolated to connect the value of 9 9 (with proper slope)

at the wvave front and the asymptotic value of % 9 at §{ - ». An exponential
type of response is typical of linear viscoelastic phenomens, and such a
curve if therefore suggested. This suggestion is supported in Ref..[3)
vhere it is shown that such an approximation is succesful in an analogous

problen (wave propegation in a rod of stendard-solid behavior).
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Appendix

To show that the values and derivatives of oy 39 immediately
behind the irrotational wave front can be ;latermined from the
coefficients of the asymptotic expension of emen 51 'w(p,n),
Heaviside's series expansion method is employed (Rer; (4}).

oy . '
Suppose e Exhq,(p ,q? can be expanded in the series
[_J

@) =) A(n) P
Dm

P"'x._

Inverting both sides

A () ¢
Oy 5p(t + BN « H(t) —(—n'r-—

vhere the right hand side has been inverted term by term (Jjustified in
Ref. (4]), and the left hand side has been inverted by use of the shift
theorem with the knowledge that aim({,n) 30 for { <mn. Thus

a(n) (t-mpn)®t

oidv (b‘l) - B(‘ - ﬂx‘ﬂ)z (n-1)1
' ' nel )

But the infinite sum represents the Taylor series expansion in §, about
+ ‘ ‘ +
= my, of ai‘w (continued analytically at § = ).

Hence

&
b = 5 04 ()] o

Lu‘l O ¥

"

Foivpa
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Similarly if

R 'zl”n('l’ »™
m .
then

an
Bm.l(‘l) = a—‘n- GIJ*("“)]". .T‘r
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m:_i_mgtiono in Problems of Viscoelastic Wave P_r_ogaggt;on.

Problépa involving stress wave propagation in viscoelastic materials
can generally be treated by integral transform methods, but the complete
mmerical svaluation of the inversion integral becomes in many cases
very complex and lengthy. It ie usually possible, however, to use
asymptotic methods to obtain the value of the stress o(t ) and its time
derivative G(to) at the time of arrival, t , of the stress vave at &
particular point in the body; in many cases, these initisl values may be
obtained in closed form. In addition, the long term solution for the °
stress, o(»), can also be determined in a simple manner, either from the
physical situation or from sn asymptotic evalustion of the inversicn

integral.,

Once the values of o(to), 6(&0) and o(w) have been found, it 1'l
pdu;ble to interpolate a curve for the stress 0. Bleich and Sackman
mr‘preuntod an exponential interpolation in Reference (1]. Their
interpolation 1s based on the reasoning that since an exponential type
of response is typical for linear viscoelastic media, an exponential _
interpolation is appropriate. Figures (1s, b) show typical stresses ¢
(st some point in the body) to which the interpolation may be spplied V
as c function of an actual or non-dimensional time t. The complete
history of the stress is given by Eq. (1) of Reference [1):

LAY ot < t°

. éo(t-to)] pw

‘ 0.'00

o-c--(eq-co)exp[

v
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vhere to, Oy éo and g ere evaluated first for the problem under

consideration.

In the application of the above interpolation to practical problem,
1t 1s also possible to encounter cases in vhich (o - °6) is opposite in
sign to ¢ o * For such cases, the exponential interpolation of Eq. (1)
18 obviously invalid since the exponential would be raised to a positive
pover in time. Figures (2a, b) show typical stress-time relations of
this type. An interpolation in the form of the product of a linear
polynomial in ¢ multiplied by an exponential in t can be used in such

a case. The complete history of the streos is then given by:

o= t<t°

In the case of Eq. (1), the interpolation was uniquely determined by the
three values o, 0 o 20d o « In the present interpolation, Eq. (2),
these three quantities and an addit:lonal constant T are required.

The value of T cannot be determined unless an additional asymptotic
value 1s obtained from the inversion integral of the problem; this in
general would be very difficult to do. It suggests itself, however, to
chose the decay time of the viscoelastic medium as a suitable value of
the constant T.

The interpolations of Eqs. (1) and (2) may be utilized to obtain
streszes which are produced by time varying pressure loadings P(t) acting

. on the viscoelastic body, once the stresses which are produced by a unit

Lonnasaiord {::3‘ § ik [«.‘ 3

{Rien | a

- /= ==
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step pressure loading sre svaluated. Lot the quantities %

be the stresses at a point in the viscoelastic body vhich are produced

’Com@.

by & unit step pressure loading. The corresponding stress-time history
o(t) wvhich is produced by the loading P(t) is cbtained through the use
of Dubhamel's integral and Eq. (1) or Eq. (2).

For an applied pressure of the form
Bt

at - '
' : °D )
P(t)-Po(l--g;)[lo PiBoe P] (3)
the stress o(t) produced at a point in the body becomes, using Eq. (1):

o(c) =0 t<0
[

R e Sl HCIDIC At
[ P

—
*
+

w

[ ) | kD - | | '%!‘
TR ORI 4 3

S S,
D
+P°¢°[1-b‘-][lc PiBe P] i t20
b :

vhere t = t-to is measured from the time of arrival, 'o’ of the vave at
the point and

) ) o -'od . (s).

Repeating the procedure with Eq. (2), the stress at a point in the
body due to the time decaying pressure loading of Eq. (3) becomes:
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vhere
A= O, - co (s)
and ‘ 4]
be g - 30 (v)

The interpolations considered should prove convenient in different
problems of wave propggntion in viscoelastic media. It can be applied
in two - or three dimensional problems vhere two distinct signals, similar
to P and B vaves in elastic media are received at a point. In such cases,
each component of the ltgnalimay be approximated by an expression similar
to those given by Eq. (1), (2), (&) or (6). Tbe spplications of these
interpolations to the stresses produced by a progressing surface pressure
on the surface of a viscoelastic half-space [Section I of this report])

are given in Section III.

REFERENCE,

1. "An Approximation in Problems of Viscoelastic Wave Propagation" by
H.H. Bleich and J.L. Sackman, Technical Report Ro. 10, Contract
Nonr-266(34), Columbia University, Beptember 1960.
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BYALUATION OF THE STRESSES IN A VISCOXLASTIC HALF-SPACE WHICH ARE PRODUCED
BY A PROGRESSING TIME-DECAYING SURFACE PRESSURE.

Inmtroduction.

The stresses vhich are produced in & linear viscoslastic (standard
solid) half-space by the unifora motion of & step pressure on its surface
have been itudiod in Bection I for the case in wvhich the velocity of the
traveling surface pressure is greater than the velocities of plane irro-
tational and equivoluminal waves in the medium (cuperseisaic case).
Spetific results were presented vhich allov the determination of the
quantities o , 6 and ¢ corresponding to both the irrotational and the
equivoluminal waves produced in the mediun by the unit step pro‘uurc on
the surface. The quantities g, J, &nd g_ can be used in conjuncticn vith
the interpolations vhich are presented in Section II to determine the
stress history at a point in the medium produced by a time-decaying .
surface pressure (Eqs. (k) or (6), Bection II].

The pz;eunt Section presents m'merical results for the stress components

O,y Ugq 804 0 8t varicus points in the viscoelastic medium (Fig. (1))

n’
vhich are produced by the time-decaying surface pressure shown in Fig. (2).
{8ee Eq. (3), Bection II]. Por comparison purposes, the corresponding
stresses vhich would be produced 4in an elastic medium having a shear modulus
equal to the unrelaxed shear modulus of the viscoelastic medium are also

shown in each case.
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The stresses produced by the irrotational and the equivoluminal waves
in the viscoelastic media are first shown separately. In addition, the
total stresses at a point are evaluated by .. superimposing the irrota-
tional and the equivoluminal stresses with an appropriate time delay.

Due to the absence of reliasble information om the eppropriate visco-
elastic constants for real materials, a set of viscoelastic constants has
been chosen for en illustrative example only. The results should not be

"taken as applying to & specific real material unless the coincideuce of

the viscoelastic parameters for the real material and those used in the
1llustrative example can be shown. The mmerical values of the material
and the load constants vhich vere used in the computations are tabulated
below.

(a) Material Comstants - Viscoelastic Medium,

¥ = Unrelaxed shear modulus = 1.200 (106) na/ma.
»

"4 = Relaxed shear modulus = p/2 = 0.600 (106)‘ 1b/1n2.
[+

=  Mass density of mediwm = 5.186 n.leczlft&.
(v = 167 1/2e3). |
v = Polisson's ratio of unrelaxed body = 0.25.
T = Relaxation time for viscoelsstic mediunm = 15 ms. -

(b) Materinl Constonts - Linesrly Elastic Media.

Mass density of medium = 5.186 n.secalftl’

p =
v = Poisson's ratio = 0.25.

C, = Velocity of P vaves = 10,000 ft/scc [unrelaxed ul.
C, = Velocity of 8 waves » 6,000 ft/sec {unrelaxed ul.
B =~ Bhear modulus = p (unrelaxed) = 1.2 (105) 1b/10°,
or

B = Shear modulus = p (relaxed) = 0.6 (106) /12,

TN e i A WL N T N
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The elastic medium for vhich u (unrelaxed) is used will be referred

‘to as Rlastic-Unrelaxed; that for which p (relaxed) is used will be

referred to as Xlastic-Relaxed.

(c) Constants for Surface Pressure Distribution [Pig. (2)].

P, = Pesk pressure = 2000 1b/in°.
Y = Uniform velocity of traveling wvave = 12,000 ft/sec.
Relaxation time of surface pressurs « 30 ms.

Numerical Results.

Consider the geometry shown in Pig. (1) in vhich the point A s
located at a depth 8 = 500 £t and I and B represent the irrotational and
the equivoluminal wave fronts respectively vhich are produced dy the
surface pressure shown in Pig. (2).

Pigures (3)-(5) show the stresses o and o, vhich are produced

xx* Tzs
at the point A (x = 500 £t) by the irrotational vave in the viscoslastic

nediua. The value of the sbscisga, t = 0, represents the arrival time

of the wave at the point. The results were obtained using an interpolation

of the type shown in Eq. (k), Bection II: and the input parameters % %,

and g were computed from Eq. (20) and Eq. (22) of Bection I. In each

case, the corresponding of.reu in an elastic body vhose shear modulus is

equal to the shear modulus of the unrelaxed viscoelastic body is also shown.

It is seen that the high peak stress which is predicted by linear glastic theory
is considerably attenuated by the viscoelastic medium. BHowever, at later
times, the stresses in the viscoelastic body may be higher than